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Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels
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A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by
introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary
condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship
similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical
prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the
aortic flows observed experimentally. The model is expected to find many applications for studying blood
flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.
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I. INTRODUCTION

The study of the viscous fluid flow in large distensib
blood vessels is an important area of practical interest@1,2#.
It is well known that blood is a suspension of formed e
ments in plasma. The formed elements are the red c
white cells, and platelets. The diameters of all these elem
are usually less than 8mm. In large arteries with diameter
exceeding 100mm, blood is usually regarded as effective
homogeneous, because the scale of the microstructure
much smaller than that of the flow. Moreover, in these la
arteries, blood is usually assumed to be Newtonian.

The artery walls are viscoelastic. The incremental Youn
modulus affects the velocities of the artery walls, which
important in the study of blood flow in large arteries. How
ever, the viscoelastic property of the artery walls makes
system too complex to be studied. In this paper, for the
mary study of blood flow in large arteries, we assumed
arteries to be ideal elastic pipes.

The distensibility of the blood vessels adds considera
difficulty to the analysis of the flows in large blood vesse
Up to now, most theoretical works have been limited to l
ear theory and to models based on rigid tubes. In orde
include the effect of nonlinearity and the elastic properti
numerical method plays a main role in this field. Howev
conventional methods for simulating viscous fluid flow
large blood vessels, including numerical integration of
Navier-Stokes equations, are particularly difficult to imp
ment in complex and changeable geometries.

The lattice Boltzmann method~LBM ! @3,4# has recently
been proved competitive for studying the domain of flu
flow for various physical system. Based on the lattice g
automata~LGA! @5#, the LBM inherited most of the advan
tages of the LGA and eliminated the excessive statist
noise and the lattice artifacts such as the lack of the Galil
invariance. In particular, the LBM is ideally suited for com
putation on parallel computers since most algorithms o
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depend on nearest-neighbor information. The LBM has b
extended to simulate the flow through porous media@6,7#,
multiphase flow@8,9#, suspension particles@10,11#, chemi-
cally reacting flows@12#, droplet deformation@13#, and su-
personic flow@14#. Recently the LBM has been applied t
calculate photonic bond structure and defect modes in p
tonic band gap material@15#. In this paper, we extend th
LBM for simulating the viscous flow in large distensib
blood vessels. To this end, the moving impermeable bou
ary conditions with arbitrary geometry play an importa
role. Moreover, as the blood should not leak out of vess
the boundary conditions adopted must satisfy mass con
vation. Chenet al. @16# proposed an extrapolation schem
for LBM simulation in the viscous fluid system with com
plex geometry. Filippova and Hanel@17# suggested
boundary-fitting conditions to achieve second-order accur
on the complex boundary for steady-state flows. Ladd@10#
was the first to apply the LBM to moving particles in th
fluid by modifying the bounce-back rule to obtain a tec
nique that is successful in many cases. Aidunet al. @11# ex-
tended the method to impermeable solid surfaces. They u
the model to simulate the particle suspensions in fluid flo

In this paper, a boundary condition at the moving w
boundary is presented and used to simulate the flows in
tensible vessels. The mass conservation at the mo
boundaries is tested in detail. Based on this model, the
cous flows in elastic vessels are simulated with a press
radius relationship similar to that of the pulmonary blo
vessels@1#. The numerical results for steady flow are in e
cellent agreement with the analytical prediction, while tho
for pulsatile flow are comparable with those of the aor
flows observed experimentally@2#. These results, togethe
with the simplicity and the ease of implementation of t
model, suggest that our approach may be a promising
for studying the blood flow in arteries, especially in tho
suffering from atherosclerosis, stenosis, or aneurysm.

The paper is organized as follows. In Sec. II we brie
describe the lattice Boltzmann method. Section III is devo
to a description of the boundary conditions. The mass c
servation at the physical boundaries is considered in deta
Sec. IV. In Sec. V, the simulations on the steady and unste
,

om
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flows, and their comparison with analytical predictions a
experiment are presented. The conclusion and discussio
presented in Sec. VI.

II. THE LATTICE BOLTZMANN MODEL

In this paper we choose to work on a square lattice in t
dimensions as shown in Fig. 1. Generalization to three
mensions is straightforward and the results for the thr
dimensional case will be presented elsewhere. Letf i(x,t) be
a non-negative real number describing the distribution fu
tion of the fluid density at sitex at timet moving in direction
ei . Here e05(0,0), ei5(cosp@i21#/2,sinp@i21#/2), i
51,2,3,4, and ei5(cosp@2i21#/4,sinp@2i21#/4), i
55,6,7,8 are the nine possible velocity vectors. The distri
tion functions evolve according to a Boltzmann equation t
is discrete in both space and time@3,4#,

f i~x1ei ,t11!2 f i~x,t !52
1

t
~ f i2 f i

eq!. ~1!

The densityr and macroscopic velocityu are defined by

r5(
i

f i , ru5(
i

f iei ~2!

and the equilibrium distribution functionsf i
eq are usually

supposed to be dependent only on the local densityr and
flow velocity u. A suitable choice reads@3,4#

f i
eq5ra iF113ei•u1

9

2
~ei•u!22

3

2
u2G , ~3!

where a054/9, a15a25a35a451/9, and a55a65a7
5a851/36. The macroscopic equations can be obtained
Chapman-Enskog procedure@3,4#. They are the continuity
equation

] tr1]a~rua!50 ~4!

and the Navier-Stokes equations

] t~rua!1]b~ruaub!5]ap1n]b@r~]aub1]bua!#,
~5!

FIG. 1. Basic cell for the two-dimensional ‘‘nine-speed’’ lattic
Boltzmann model.
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where p and n are the pressure and the viscosity, resp
tively, defined by the equationsp5cs

2r with cs
251/3 andn

5(2t21)/6.

III. THE BOUNDARY CONDITIONS

A. Boundary conditions for stationary boundaries

For clarity of the following description, let us first defin
three types of nodes: boundary nodes, fluid nodes, and
nodes. In Fig. 2 we show an example, where the heavy s
line is a physical boundary, under which is a wall. Associ
with each lattice node asquareof unit sides centered at th
node, as shown in Fig. 2 by the shaded part. A node is ca
a boundary nodeif any physical boundary crosses itssquare
~see, e.g., nodeA in Fig. 2!. In Fig. 2 the boundary node i
represented by a filled square. A node is called a wall n
~fluid node! if its associated square is wholly inside the im
permeable wall~fluid domain!, as shown by a filled diamond
~open circle! @18#.

It is clear that only a part of the square of the bounda
node is filled with fluid, so that the real fluid density at th
boundary node is significantly less than those at its neighb
ing fluid nodes. In fact, for any boundary node, only t
distribution function in the directionei pointing toward a
fluid node isrelevant, which will be used in the streaming
step, while the distribution function in the directionei point-
ing toward a boundary node or wall node isirrelevant. Simi-
lar to what was proposed by Chenet al. @16#, the relevant
distribution functions at these boundary nodes are obtai
by extrapolation before each streaming. However, the pre
scheme includes two steps: the extrapolation of the none
librium part of the distribution function, and the extrapol
tion of the temporarydensity andtemporaryvelocity ~to be
defined below!, based on which the equilibrium part of th
distribution function is specified. To be more specific, let
take the boundary node marked byA in Fig. 2 as an example
In order to obtainf 6(xB) by streaming,f 6(xA) should be
determined. Denote

f 6~xA!5 f 6
eq~xA!1 f 6

neq~xA!, ~6!

wheref 6
eq(xA) and f 6

neq(xA) are the equilibrium and nonequ
librium parts of the distribution functionf 6(xA). We assume
that

FIG. 2. Computational mesh and geometrical relation of so
boundaries.
5-2
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LATTICE BOLTZMANN METHOD FOR SIMULATING THE . . . PHYSICAL REVIEW E 65 051925
f 6
neq~xA!52 f 6

neq~xB!2 f 6
neq~xC!. ~7!

This extrapolation scheme guarantees first-order nume
accuracy for f 6

neq. For example, assume that the spat
increment is dx. Using Taylor’s expansion we know
that f 6

neq(xB)5@ f 6
neq(xA)1 f 6

neq(xC)#/2)1O(dx2) @assuming
f 6

neq(xA) and f 6
neq(xC) are known#, or f 6

neq(xA)52 f 6
neq(xB)

2 f 6
neq(xC)1O(dx2) @assumingf 6

neq(xB) and f 6
neq(xC) are

known#, leading to a first-order accuracy approximation
the nonequilibrium part of the unknown distribution functio
at a boundary node@16#. As the nonequilibrium part is the
first-order small quantity in the Chapman-Enskog procedu
the error caused by Eq.~7! in f 6(xA) is of third order.

The equilibrium partf 6
eq(xA) is calculated based on Eq

~3! with the temporarydensityrA and velocityvA . The lat-
ters are obtained by the following extrapolation and inter
lation, respectively:

rA52rB2rC , ~8!

vA5
vK1~D21!vB

D
, 0.5<D,1.5, ~9!

whererB and rC are the well-defined densities at the flu
nodesB andC, D is the vertical distance from the pointK on
the physical boundary to the nodeB shown in Fig. 2, andvK
andvB are the fluid velocities atK andB, respectively. AsvK
is the velocity of the fluid atK, it can be nonzerowhile the
physical boundary is stationary if the boundary is permea
With f 6(xA), the streaming from the boundary nodeA to the
fluid nodeB can be carried out like that between the flu
nodes. It should be noted that although Eq.~9! is the same as
that in the paper of Filippova and Hanel@17#, the range ofD
is 0.5<D,1.5, which avoids the singularity point ofD50.

The above procedure@Eqs. ~6!–~9!# is applied to each
relevant directionei of a boundary node atx to obtain f i(x)
for streaming, whilef i(x) in the irrelevant directionei is
undefined. The macroscopic densities and velocities at
boundary nodes are also undefined at this stage, while
temporarydensity and velocities in Eqs.~8! and ~9! are in-
troduced solely for the calculation of the equilibrium dist
bution function in the directionei .

B. Numerical demonstration of the accuracy of the boundary
condition

The Poiseuille flow in an inclined tube shown in Fig.
with the velocity of the fluid at the tube boundaryvk50
provides a good benchmark for testing the boundary co
tion, since its boundary is not flat, while analytical results
available that make the comparison to high accuracy p
sible. The analytical solution for the velocity profile
known and given by

uj5u0S 12
j 2

d2D , ~10!

whereuj is the component of the velocity vector along t
flow direction at a distancej from the centerline of the tube
05192
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d is the radius of the tube, andu0 is the maximal velocity,
which depends on the pressure differenceDp between the
inlet and outlet. The relative error at locationj, e j

rel , is de-
fined as

e j
rel5Uuj2ū j

uj
U, ~11!

where ū j is the simulated velocity at locationj. In order to
minimize the error due to the inlet and outlet, we consid
the inclined tube withu5tan21(k/ l ), where k is a non-
negative integer,l is a positive integer so that all the nodes
x1nle11nke2, with n being an arbitrary integer, share th
same distance from the centerline and velocity for the a
lytical solution~10!. Unlike a flat tube along thex direction,
where all the nodes at the inlet~outlet! share a samex value,
for an inclined tube the inlet~outlet! is like the left-most
heavy dash line in Fig. 3. Explicitly, the nodes at the in
~outlet! of this inclined tube locate on a liney2y05
2( l /k)x2x0, wherex5(x0 ,y0) is a node at the inlet~out-
let!. Without loss of generality, we assumel>k. We set

f i~x!/ f 0~x!5 f i~x1 le11ke2!/ f 0~x1 le11ke2!

when x is a fluid node at the inlet,

f i~x!/ f 0~x!5 f i~x2 le12ke2!/ f 0~x2 le12ke2!

with x being a fluid node at the outlet

for i 51,2, . . . ,8,while the density at the inlet~outlet! is
fixed. Since the node atx at the inlet~outlet! and the node at
x1 le11ke2 (x2 le12ke2) in the fluid domain share the
same distance from the centerline, these assumptions gu

FIG. 3. Part of an inclined tube for the inclination angleu
5tan21(1/2). The solid lines are the physical boundaries of t
tube. If the halfway bounce-back rule is applied, the unshaded
represents the fluid domain. The heavy dashed lines are the r
ence lines for measuring the velocities.
5-3
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HAIPING FANG, ZUOWEI WANG, ZHIFANG LIN, AND MUREN LIU PHYSICAL REVIEW E 65 051925
tee that they share the same velocity, satisfying the analy
results ~10!. Moreover, the distribution functions in som
directions at the nodes near the inlet~or the outlet! cannot be
determined in the streaming step for an inclined tube.
example is the distribution function from the left side of t
nodes on the second left-most heavy dashed line in Fig.
we assume that the left-most heavy dashed line is the in
In the present simulation, they can also be determined by
above equations. In the present paper, we only show
results for 2k5 l 52.

Initially, the distribution functions at all the fluid node
including those at the inlet and outlet, are assumed to be
equilibrium distribution functions with zero velocity and on
unit density. In the first 1000 time steps, the density at
inlet ~outlet! increases~decreases! linearly up to a fixed den-
sity r in (rout). After 10 000 time steps, the system is stab
enough for analysis. In Fig. 4 we show the velocity profi
for the fluid nodes on the heavy dashed lines shown in Fi
with the present boundary condition ford53A5 andt51.
The simulation results are quite consistent with the analyt
results. For comparison, the simulation results with the h
way bounce-back rule@19# are shown in Fig. 5. It is clea
that the present boundary condition greatly improves
simulation results. Moreover, the real boundary, correspo
ing to the zero velocity, cannot be predetermined if the h
way bounce-back rule is applied for a nonflat boundary.

The maximal relative erroremax
rel , which is the maximal

value of e i
rel , and the global erroreg in velocity field of

simulation against analytical results are, respectively, defi
as

emax
rel 5max$e i

rel%,

eg5A(
i

iu~xi ,t !2ū~xi ,t !i2

(
i

u~xi ,t !2

, ~12!

FIG. 4. The normalized velocity profile obtained by applyin
the boundary conditions proposed in this paper.j is the distance
from a node to the centerline of the tube with the signs1 and2
denoting the node above or below the centerline, respectively.
solid line is the analytical result. The filled squares, circles, d
monds, up triangles, and the down triangles are the simulation
sults for the nodes on the heavy dashed lines shown in Fig. 3, f
left to right, respectively.
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wherei runs over all fluid nodes on the dashed lines in F
3. emax

rel andeg for different widthd of the tube are presente
in Fig. 6. Botheg andemax

rel are very small and less than 1%
even ford53. In all the simulations,u0 is fixed to 0.02.

We further consider the case with the fluid at the tube w
having a fixed velocityvk5(ui ,u'), whereui andu' are the
velocity components parallel and perpendicular to the tu
respectively. Some simulation results are in order. Now
analytical results of the velocity of the fluid should be t
vector sum of the velocityvk and Eq.~10!.

~1! Numerically we find that the simulations achieve m
chine accuracy ifDp50.

~2! When DpÞ0, uiÞ0, and u'50, corresponding to
nonslip of the fluid at the boundary when the tube is mov
along its axis, the simulation results show that the existe
of non-zeroui does not degrade the accuracy.

~3! When DpÞ0, ui50, and u'Þ0, corresponding to
leakage of the fluid out of the tube or a distensible imperm
able tube, the error is relative large and decreases asu' /u0
decreases, whereu0 is the maximal velocity in the tube fo
the case with the same pressure dropDp andu'5ui50 @see
Eq. ~10!#. The maximal relative error and the global error a
shown in Fig. 7.eg decreases linearly asu' /u0. For most of
the cases, such as the blood flow in elastic~blood! vessels,
u' /u0 is very small and our scheme achieves sufficient
curacy.

he
-
e-
m

FIG. 5. The same as Fig. 4 except that the halfway bounce-b
rule is applied. The solid line is the best fit of the simulation resu
The dashed line is the same as the solid line in Fig. 4, which is
expected analytical prediction.

FIG. 6. The maximal relative erroremax
rel ~filled squares! and the

global erroreg ~filled circles! for different widthsd.
5-4
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LATTICE BOLTZMANN METHOD FOR SIMULATING THE . . . PHYSICAL REVIEW E 65 051925
~4! WhenDpÞ0, uiÞ0, andu'Þ0, the accuracy of the
simulation is almost the same as case~3!.

Although the above numerical results are obtained fot
51 andu050.02, numerically we find that the simulatio
achieves similar accuracy for 0.75<t<2 andu0<0.2. Thus,
the scheme is a good candidate for the boundary condit
for stationary boundaries. The boundary condition for
nonstationary boundaries can be considered based on
scheme.

C. Boundary condition for nonstationary boundaries

If the physical boundary has nonzero vertical veloci
some boundary nodes will change into fluid nodes and v
versa. As described above, the distribution functions in ir
evant directions at any boundary node are undefined. H
ever, once a boundary node becomes a fluid node, all
distribution functions should be well defined. In our simu
tion scheme, at the time a boundary node turns into a fl
node, the distribution functions for this boundary node
assumed to be the average of the extrapolated values fro
second-order extrapolation schemeof all the possible direc-
tions. This is consistent with the above boundary condit
based on interpolation and extrapolation. For example, w
the physical boundary shown in Fig. 8 moves downward,
nodeD will become a fluid node. There are four directio
e2 ,e3 ,e5 ,e6 pointing toward fluid nodes. The distributio
functions atD are obtained as

FIG. 7. The maximal relative erroremax
rel ~filled squares! and the

global erroreg ~filled circles! for different vertical velocities of the
boundaries. The solid line is a linear fit ofeg , which shows thateg

decreases asu' /u0.

FIG. 8. The relation between the boundary nodes and fl
nodes near a nonflat physical boundary.
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f i~xD!5

(
j 52,3,5,6

$2 f i~xD1ej !2 f i~xD12ej !%

4

for i 50,1, . . . ,8. ~13!

IV. TESTING THE MASS CONSERVATION OF THE
BOUNDARY CONDITION

In this section we will show that the boundary conditio
described in the above section can be applied to study
viscous flow with moving and impermeable boundaries.

A. Necessary conditions for a boundary condition for
impermeable boundaries

As the nodeA shown in Fig. 8, only a~shaded! part of the
squareof a boundary node falls in the fluid domain. As
result, thereal fluid massmb inside the square of the bound
ary node should be considerably smaller than that in
neighbor fluid node. If we assume, as in most cases of
LBM simulations, that the fluid density in the simulatio
domain is~approximately! constant,r0, we have

mb5r0S,

where S is the area of the shaded part of the square o
boundary node. In other words, because the area of
square associated with any node is always unity, we m
consider that the fluid density at the boundary node is

r5mb5r0S. ~14!

We emphasize that thecapacityof the boundary nodeA for
fluid particles isr0S. The shaded area of the nodeA can only
be filled with r0S fluid particles, while there is no fluid par
ticle in the other part of the nodeA.

If the inclined angle of the boundary is small, as in t
case of nodeA, the fluid density at the boundary node can
approximated by

r5r0S5r0l , ~15!

wherel is the length shown in Fig. 8, since all squares are
unit sides.

In the LBM simulation,l andr are obtainedseparately. l
is found based on the position of the physical bounda
while r, which is the fluid mass accumulated or leftover
the boundary, is determined by the fluid particle transfer
tween the partly filled boundary node and its neighbor
fluid nodes in a series of streaming steps. We can, theref
define a quantity

C~ l ,r!5~r0l 2r!/r05 l 2r/r0

to characterize the degree of mass conservation at the bo
ary. Obviously,C( l ,r)50 corresponds to Eq.~15!. There is
mass conservation at the boundary since the shaded pa
completely filled withr0l fluid particles without any free
space and extra fluid particles left. IfC( l ,r),0, then r

d

5-5
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.r0l and the extra fluidr2r0l is believed to have entere
the wall, since the capacity of the boundary node for flu
particles is onlyr0l , which can stay in the shaded part of th
squareof the boundary node. Similarly, whenC( l ,r).0, r
,r0l and the differencer0l 2r is regarded as fluid particle
coming from the wall since the shaded part of thesquareof
the boundary node must be filled withr0l fluid particles. As
a result, the wall behaves in some sense like a fluid reser
or physically, the boundary should be permeable. An imp
meable boundary requires that the boundary conditi
should yield~nearly! vanishingC( l ,r).

In the following three subsections we will show that t
present boundary condition leads to a~nearly! vanishing
C( l ,r). So it can be applied to the impermeable boundar

B. Analysis and simulation of the viscous flow in a channel
with impermeable flat boundaries

Consider a channel with a flat wall moving with a co
stant velocityu5(ux ,uy)5(u,2v), whereu and2v are the
parallel and vertical components, respectively. Without l
of generality, we assumev.0. After the system become
stable, all the fluid nodes share thesame and time-
independentdistribution functions f i , i 50,1,2, . . . ,8 and
densityr0. The relevant distribution functions of the boun
ary nodes are also the same as those of the fluid nodes

Let us consider a boundary nodeA at xA of a bottom
boundary~see, e.g., the nodeA shown in Fig. 8!. In the
streaming step, the distribution functionf 4(xA2e4), f 7(xA
2e7), and f 8(xA2e8) will propagate to the nodeA. The
node A thus receives fluidf 4(xA2e4)1 f 7(xA2e7)1 f 8(xA
2e8) in the streaming step. On the other hand, the fl
distribution functionsf 2(xA), f 5(xA), and f 6(xA) will leave
the nodeA and propagate to the nodes atxA1e2 , xA1e5, and
xA1e6, respectively. The nodeA loses fluidf 2(xA)1 f 5(xA)
1 f 6(xA) in the streaming step. The increment of the flu
density at the boundary nodeA in a the streaming step is
therefore,

dr5@ f 4~xA2e4!1 f 7~xA2e7!1 f 8~xA2e8!#

2@ f 2~xA!1 f 5~xA!1 f 6~xA!#.

Recalling that all the fluid nodes and the relevant dir
tions of the boundary nodes share the same and ti
independent distribution functionsf i(x) for any i, one gets

dr5 f 41 f 71 f 82 f 22 f 52 f 652r0uy5r0v. ~16!

In the time interval@ t0 ,t1#, the increment of the densityr is
v(t12t0). Let t0 be the time when wall node atx becomes a
boundary node andt1 the time when the boundary node tur
to a fluid node, i.e.,

a wall node→
at t0

a boundary node→
at t1

a fluid node. ~17!

Then one has the fluid densityr(x,t0)50 and ( t5t0

t1 vDt

51. HereDt51 is the time step. As a result, the density
the node att1 reads
05192
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r~x,t1!5 (
t5t0

t1

drDt5 (
t5t0

t1

r0vDt5r0(
t5t0

t1

vDt5r0 .

~18!

This new fluid node, therefore, has the same density as o
fluid nodes, yielding no perturbation when the bounda
node becomes a fluid node. Moreover, at timeta with t0
,ta,t1 , l 5v(ta2t0), andr5r0v(ta2t0), we get

C~ l ,r!5 l 2r/r050.

A similar result can be obtained for the process

a fluid node→a boundary node→a wall node ~19!

as well. We verify this by numerical simulation. The simul
tion results achieve machine accuracy.

C. Simulation of the viscous flow in a channel with
impermeable nonflat boundaries

If the channel considered above has nonflat walls
shown in Fig. 8, we may have to consider the bound
condition for the nodesB, C, andD. The streaming between
the boundary nodesB andD will also be considered to guar
antee that the density increment on the nodeB behaves the
same as the other boundary nodes on the flat boundary.
distributions functions for such streaming are obtained by
average of the extrapolated values of all the possible di
tions. For example, there are two directions,e2 and e6, for
the nodeB with the directions pointing toward fluid nodes
The distribution functionf 5(xB) is enforced by

f 5~xB!5

(
j 52,6

f 5~xB1ej !

2
. ~20!

We can get the same result@Eq. ~18!# in a way similar to that
shown in the above section.

The cases for nodesC andD are completely different. The
increment of the fluid density at the nodeD in each~stream-
ing! time step is

drD5 f 4~xD2e4!1 f 7~xD2e7!1 f 8~xD2e8!1 f 1~xD2e1!

1 f 5~xD2e5!2 f 2~xD!2 f 5~xD!2 f 6~xD!2 f 3~xD!

2 f 7~xD!

5 f 41 f 71 f 81 f 11 f 52 f 22 f 52 f 62 f 32 f 75 f 41 f 1

1 f 82 f 22 f 32 f 6 . ~21!

The increment of the fluid density at the nodeC in each
~streaming! time step is

drC5 f 8~xC2e8!2 f 6~xC!5 f 82 f 6 . ~22!

The total increment of the fluid density at both the nodesC
andD in each~streaming! time step is
5-6
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dr5drC1drD

5 f 41 f 71 f 82 f 22 f 52 f 61 f 11 f 51 f 82 f 32 f 62 f 7

5r0~ux2uy!

5r0~u1v !. ~23!

If we set u50 and takedr as the total increment of th
density at the nodeD in each time step, we can get Eq.~16!
and we are in the same situation as the flat boundary.~The
case foruÞ0 will be considered elsewhere, in which w
may have to consider the streaming of the distribution fu
tions between the neighbor boundary nodes!. We verify this
with a numerical simulation of the tube shown in Fig. 9. T
simulation also achieves machine accuracy.

In the case of varyingv, we cannot get the analytica
result as Eq.~23!, since the distribution function is differen
at different fluid nodes and different times. However, n
merical simulations show thatuC( l ,r)u is very small. We
have performed a simulation of the viscous fluid flow in t
channel shown in Fig. 9 for 2000 time steps withv
5v0sin(vt), wherev050.004 andv52p/T with the period
T51000. The distribution ofC( l ,r) is shown Fig. 10 for all
boundary nodes, corresponding to different values ofl; see
open diamonds in Fig. 9. The maximal absolute error
uC( l ,r)u is 0.0035. In the simulation, the densities at t

FIG. 9. A channel with nonflat boundaries. The boundary no
and the fluid nodes are represented by open diamonds and
circles, respectively.

FIG. 10. uC( l ,r)u vs l in the channel with nonflat boundarie
shown in Fig. 9 with the densitiesr051 at the inlet and outlet. The
channel moves perpendicular to the channel with velocity (ux ,uy)
5@0,0.004sin(2pt/1000)#.
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nodes at the inlet and outlet are fixed to ber051. The error
comes from the deviation of the density fromr0, which re-
sults from thetime-dependentvelocity v. In Fig. 11, we
show the densities at the nodes atx540 with respect toy for
different timest. The densities at these nodes oscillate w
sin(vt). Moreover, we can see that it seems thatuC( l ,r)u
shown in Fig. 10 depends onl single valuedly except at a
few points above the curve. Since the channel is nonflal
may be different for different boundary nodes. On the oth
hand, different nodes may share the same value ofl. The
boundary nodes share the samel, while the values ofC( l ,r)
are different, resulting in the multivalued results. A care
examination shows that these points come from the d
close to the inlet and outlet. We believe that the error can
reduced if we can apply a lattice Boltzmann method w
nearly constant density@20#.

D. Simulation on the viscous flow in a channel with density
difference between inlet and outlet

The pressure is proportional to the density in the conv
tional lattice Boltzmann models. In most of the cases
have to consider viscous flow with pressure gradient, so
the density is different at different fluid nodes and differe
times. For these systems, Eqs.~14! and~15! and the quantity
C( l ,r) will have to be modified as

r5rnS, ~24!

r5rnl , ~25!

and

C~ l ,r!5 l 2r/rn ,

wherern is determined by the densities of the fluid nod
nearby. A suitable choice is thatrn is the average of the
extrapolated values from asecond-order extrapolation
schemeof all the possible directions, as shown in Eq.~20!.
The absolute value ofC( l ,r) is much larger in those case
In Fig. 12 we show the simulation results for the visco
flow in the same channel shown in Fig. 9 for 2000 time ste
with v50.003 and v5v0sin(vt), respectively. Herev0
50.004 andv52p/1000. The densities at the nodes on t
inlet and outlet are fixed to be 0.9918 and 1.0066, resp

s
ed

FIG. 11. The densities at the nodes atx540 with respect toy for
different timet. T is the period of oscillation.
5-7
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tively, corresponding to the maximal velocity compone
along the channel at the outlet being 0.0368.uC( l ,r)u is less
than 0.02 and 0.05 for the constant and varying velocit
respectively.

E. Simulation of the viscous flow in a channel with elastic
boundaries

Initially the tube has a constant radiusa059.5, and the
density decreases linearly from 1.0190 to 1.0034 along
channel. For our LBM simulation, the channel is 59 latti
units in length so that each~upper or lower! boundary is
composed of 59 small segments with unit length. A line
compliance force2aDy is applied on the segment if it
displacement from the initial location isDy. The mass for
each segment is 500 anda50.002. The pressureps at each
segment of the physical boundary is obtained by linear
trapolation.ps2p0 determines the net hydrodynamic forc
acting on this segment, wherep051/3. The sum of the ne
hydrodynamic force and the compliance force gives its
locity and its displacement from the equilibrium location
Newtonian dynamics. After 800 time steps, we get the ch
nel shown in Fig. 9,uC( l ,r)u are shown in Fig. 13.uC( l ,r)u
is less than 0.02.

FIG. 12. uC( l ,r)u vs l in the channel with nonflat boundarie
shown in Fig. 9 with the densities at the nodes on the inlet
outlet of 0.9918 and 1.0066, corresponding to the maximal velo
component along the channel at the outlet being 0.0368. The c
nel wall moves perpendicular to the channel with veloc
(ux ,uy)5@0,0.004 sin(2pt/1000)# ~open circles! and (ux ,uy)
5(0,0.003)~filled squares!, respectively.

FIG. 13. uC( l ,r)u vs l in the channel with elastic boundaries.
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The above discussion shows that the boundary condi
can be applied to simulate the viscous flow with moving a
impermeable boundaries.The errors mainly result from the
compressibility of the lattice Boltzmann model, as had been
discussed in Sec. IV C. If there is an incompressible mo
with explicit constant density while the pressure deviation
allowed @20#, Eqs. ~16! and ~23! are guaranteed at least t
first-order accuracy for the flat and nonflat boundaries,
spectively. In the simulation of the viscous flow in the lar
blood vessels, the longitudinal movement is usually n
glected@2#. Consequently, there is approximate mass con
vation for both the flat and nonflat boundaries with an ar
trary velocity in the present scheme.

V. NUMERICAL SIMULATIONS OF THE VISCOUS FLOW
IN DISTENSIBLE TUBES

A. Steady flow in an elastic tube

We perform simulation of a long and thin plane elas
pipe with lengthL. The pressurep(x) to width a(x) relation-
ship is assumed to be linear

p~x!2p05a„a~x!2a0…, ~26!

wherea0 is the width when the pressure inside is fixed top0
and a is a compliance constant. In the three-dimensio
case witha being the tube radius, Eq.~26! is a good repre-
sentation of the pulmonary blood vessels@1#. Denoting the
pressure at the inlet and outlet byp(0) and p(L), respec-
tively, we assumep(0).p(L). Since the pipe is long and
thin, that is,L!a, and the pipe is smooth under deformatio
the velocity can be approximated by that of the plane P
seuille flow @1#. Denoting byu(x,y) the longitudinal veloc-
ity of the flow in the tube at (x,y),

u~x,y!5u0~x!F12
4y2

a2~x!G ,
wherey is the distance from the centerline,

u0~x!52
]p~x!

]x

a2~x!

8n

is the velocity at the centerline. The volume-flow rate atx is

Q~x!5E
2R

R

u~x,y!dy5
2

3
u0~x!a~x!52

a3~x!

12n

]p~x!

]x
.

From Eq.~26!,

]p~x!

]x
5a

da~x!

dx
.

Consequently

Q52
aa3~x!

12n

da~x!

dx
.

d
y
n-
5-8
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In a stationary, nonpermeable tube,Q is constant through the
length of the tube. Integrating this equation, we obtain,
steady flow, a theoretical formula for the widtha(x) and the
pressurep(x),

a4~x!2a4~0!5Bx, B5248nQ/a, ~27!

Fa01
p~x!2p0

a G4

2Fa01
p~0!2p0

a G4

5Bx, ~28!

whereQ is the volume-flow rate, which is constant throug
out the pipe in a stationary, nonpermeable pipe.

For our LBM simulation, the pipe is 100 lattice units
length so that each~upper or lower! boundary is composed
of 100 small segments with unit length. Each unit is assum
to obey Hooke’s law, i.e., a linear compliance force2aDy
is applied on the segment if the displacement from the e
librium location of a segment isDy. Equation~26! is the
steady state of this compliance force. The mass for e
segment is 500. The equilibrium radius isa059.5 for p0
51/3. Initially the tube has a constant radiusa0. The pres-
sureps at each segment of the physical boundary is obtai
by linear extrapolation.ps2p0 determines the net hydrody
namic force acting on this segment. The sum of the net
drodynamic force and the compliance force gives the ve
ity and its displacement for each segment from
equilibrium location by Newtonian dynamics.

The radius and the pressure for part of the tube for ste
flow are shown in Figs. 14 and 15 respectively. It is clear t
the simulation results are in excellent agreement with
analytical predictions. In our numerical simulation,a
50.002,t51,p(0)50.297 62, andp(L)50.302 94. It should
be noted that although we have obtained similar results
our previous paper@18#, the present scheme reaches mu
higher accuracy.

B. Unsteady flow in artery

In the fluid domain, the continuity equation for the incom
pressible fluid reads

FIG. 14. The analytical prediction (2) and numerical simula-
tion results (1) of the width a(x) of an elastic pipe along the
channel.
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whereu5$u,v% is the velocity of the fluid. The continuity
equation can be written in terms ofu andv as

]u

]x
1

]v
]y

50. ~29!

Integratingy from y52R to y5R, whereR is the radius of
the tube atx, we obtain

]

]xE2R

R

udy1vu2R
R 50. ~30!

Recalling the symmetry of the tube

vb5vuy5R52vuy52R , ~31!

one has

vb52R
]um

]x
, ~32!

wherevb is the radial velocity of the upper tube bounda
andum is the average velocity ofu, defined by

um5
1

a~x!
E

2R

R

udy. ~33!

In Fig. 16 we show an example for simulation results. T
pipe used is 200 lattice units in length and 38 lattice units
width when the pressure is fixed to bep050.333 333 3 in the
tube. In the simulation, the pressure at the outlet is fixed
be p0, while the pressure at the inlet varies according to
equation

pinlet5p01pacos~vt !, ~34!

wherev52p/750. The maximal velocities for the open an
filled circles are 0.08 and 0.008, respectively.pa is deter-

FIG. 15. The analytical prediction (2) and numerical simula-
tion results (1) of the pressurep(x) in the same elastic pipe of Fig
14. The dashed line is a linear connection between the begin
and ending points serving as a guide to eyes, which should be
result for a rigid pipe.
5-9
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mined by the maximal velocity. The simulation results agre
with Eq. ~32! approximately. The error results from the com
pressibility error of the lattice Boltzmann model. It is cle
that the smaller the maximal velocity, the smaller the er
In the LBM, the continuity equation is Eq.~4!, which is not
incompressible. It seems that an incompresible mo
@20,21# is important to obtain accurate numerical results
the viscous flow in distensible blood vessels.

Finally we present our simulation results on the pulsa
flow in large blood vessels. The pipe isL51200 units in
length and 76 units in width initially with both sides close
At discrete timet5T,2T, . . . ,nT, . . . , 1/500 of the total
fluid particles in the pipe are injected into the pipe from t
left side and ejected out of the pipe from the right side
multaneously withT5671. The fluid will then flow from left
to right. Figures 17~a,b! display the typical flow field in the
distensible blood vessel atx540 of the tube. We find tha
both the axial velocity profiles and the centerline veloc
wave are quite similar to the experimental results for
aortic flow ~Fig. 7.27 of@2#!. Considering that the simulatio
is performed in two dimensions while the experiment is
three dimensions with a viscoelastic blood wall, the agr
ment between our simulation results and the experime
ones@2# is rather satisfactory. We also show the radial velo
ity of the vessel wall in Fig. 17~c!, the difference between th
experiment and theoretical simulation results from the v
coelastic property of the wall. In the simulation, the tu
wall is pure elastic so that the wave of the radial velocity
close to a sine function. The viscoelastic property of
blood wall leads to a simple pulse in the wave of the rad
velocity from experiment.

VI. CONCLUSION AND DISCUSSION

We have established a lattice Boltzmann model for sim
lating the viscous flow in large distensible blood vessels
introducing a boundary condition for elastic and movi
boundaries. The mass conservation for the boundary co

FIG. 16. vb vs 2R]um /]x in an elastic tube with pulsatile fluid
flow in a period atx510. The maximal velocities in the tube for th
open and filled circles are 0.08 and 0.008, respectively.
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tion is tested in detail, showing that the boundary condit
can be used to study the flow with impermeable boundar
The viscous flow in elastic vessels is simulated with t
pressure-radius relationship similar to that of the pulmon
blood vessels. The numerical results for steady flow ag
with the analytical prediction to very high accuracy, and t
simulation results for pulsatile flow are favorable with that
the aortic flows observed experimentally. These results,
gether with the simplicity and the ease of implementation
the model, suggest that our approach may be a promi
tool in studying the blood flow in arteries, especially in th
diseased ones that suffer from atherosclerosis, stenosi
aneurysm.

It should be noted that the compressibility of the mod
results in considerable error when pressure variation is la
enough. Incompressible LBM models with explicit~nearly!

FIG. 17. The flow field in an elastic vessel atx540. ~a! The
axial velocity profiles at different values of timet, ~b! the centerline
velocity wave,~c! the radial velocity of the vessel wall with respe
to time t. The dashed lines in~b! and~c! are the experimental result
for the aortic flow.
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constant density are necessary to obtain accurate nume
results for the viscous flow in distensible blood vesse
Moreover, the blood wall is viscoelastic and blood is a v
coelastic fluid. It had been shown that the error of the ela
property of blood can be neglected when we only consi
the flow in large blood vessels@2#. However, the viscoelstic
ls

tt.

y

ett

ns
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behavior of the blood wall is important. We are working o
this direction.
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