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Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels
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A lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels is presented by
introducing a boundary condition for elastic and moving boundaries. The mass conservation for the boundary
condition is tested in detail. The viscous flow in elastic vessels is simulated with a pressure-radius relationship
similar to that of the pulmonary blood vessels. The numerical results for steady flow agree with the analytical
prediction to very high accuracy, and the simulation results for pulsatile flow are comparable with those of the
aortic flows observed experimentally. The model is expected to find many applications for studying blood
flows in large distensible arteries, especially in those suffering from atherosclerosis, stenosis, aneurysm, etc.

DOI: 10.1103/PhysReVE.65.051925 PACS nun)er87.19—j

I. INTRODUCTION depend on nearest-neighbor information. The LBM has been
extended to simulate the flow through porous mdéi#],
The study of the viscous fluid flow in large distensible multiphase flow[8,9], suspension particlesl0,11], chemi-
blood vessels is an important area of practical intefes. cally reacting flowd12], droplet deformation13], and su-
It is well known that blood is a suspension of formed ele-personic flow[14]. Recently the LBM has been applied to
ments in plasma. The formed elements are the red cellgalculate photonic bond structure and defect modes in pho-
white cells, and platelets. The diameters of all these elementsnic band gap materidll5]. In this paper, we extend the
are usually less than §m. In large arteries with diameters LBM for simulating the viscous flow in large distensible
exceeding 100um, blood is usually regarded as effectively blood vessels. To this end, the moving impermeable bound-
homogeneous, because the scale of the microstructure is oy conditions with arbitrary geometry play an important
much smaller than that of the flow. Moreover, in these largeole. Moreover, as the blood should not leak out of vessels,
arteries, blood is usually assumed to be Newtonian. the boundary conditions adopted must satisfy mass conser-
The artery walls are viscoelastic. The incremental Young'ssation. Chenet al. [16] proposed an extrapolation scheme
modulus affects the velocities of the artery walls, which isfor LBM simulation in the viscous fluid system with com-
important in the study of blood flow in large arteries. How- plex geometry. Filippova and Hane[17] suggested
ever, the viscoelastic property of the artery walls makes théoundary-fitting conditions to achieve second-order accuracy
system too complex to be studied. In this paper, for the prion the complex boundary for steady-state flows. Lati]
mary study of blood flow in large arteries, we assumed thavas the first to apply the LBM to moving particles in the
arteries to be ideal elastic pipes. fluid by modifying the bounce-back rule to obtain a tech-
The distensibility of the blood vessels adds considerabl@ique that is successful in many cases. Aiddral. [11] ex-
difficulty to the analysis of the flows in large blood vessels.tended the method to impermeable solid surfaces. They used
Up to now, most theoretical works have been limited to lin-the model to simulate the particle suspensions in fluid flow.
ear theory and to models based on rigid tubes. In order to In this paper, a boundary condition at the moving wall
include the effect of nonlinearity and the elastic propertieshoundary is presented and used to simulate the flows in dis-
numerical method plays a main role in this field. However,tensible vessels. The mass conservation at the moving
conventional methods for simulating viscous fluid flow in boundaries is tested in detail. Based on this model, the vis-
large blood vessels, including numerical integration of thecous flows in elastic vessels are simulated with a pressure-
Navier-Stokes equations, are particularly difficult to imple-radius relationship similar to that of the pulmonary blood
ment in complex and changeable geometries. vesseld1]. The numerical results for steady flow are in ex-
The lattice Boltzmann methotLBM) [3,4] has recently cellent agreement with the analytical prediction, while those
been proved competitive for studying the domain of fluidfor pulsatile flow are comparable with those of the aortic
flow for various physical system. Based on the lattice gaglows observed experimentallj2]. These results, together
automata(LGA) [5], the LBM inherited most of the advan- with the simplicity and the ease of implementation of the
tages of the LGA and eliminated the excessive statisticamodel, suggest that our approach may be a promising tool
noise and the lattice artifacts such as the lack of the Galileafor studying the blood flow in arteries, especially in those
invariance. In particular, the LBM is ideally suited for com- suffering from atherosclerosis, stenosis, or aneurysm.
putation on parallel computers since most algorithms only The paper is organized as follows. In Sec. Il we briefly
describe the lattice Boltzmann method. Section Il is devoted
to a description of the boundary conditions. The mass con-
*Mailing address: Department of Physics, Fudan University,servation at the physical boundaries is considered in detail in
Shanghai 200433, China. Email address: hpfang2000@yahoo.coBec. IV. In Sec. V, the simulations on the steady and unsteady
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FIG. 1. Basic cell for the two-dimensional “nine-speed” lattice ~ FIG. 2. Computational mesh and geometrical relation of solid
Boltzmann model. boundaries.
. . . . - wher n re the pr re and the vi ity, r -
flows, and their comparison with analytical predictions andt. eel ege?ing dv ba ?hte(z %2;3“ i?z dV\t/itﬁ Czs:ctifst)gndespec
experiment are presented. The conclusion and discussion a|1_¥ Zy’— 11/6 y q M= Csp s v
presented in Sec. VI. =(27-1)/6.

Ill. THE BOUNDARY CONDITIONS
Il. THE LATTICE BOLTZMANN MODEL

) L A. Boundary conditions for stationary boundaries
In this paper we choose to work on a square lattice in two . ) . _ )
dimensions as shown in Fig. 1. Generalization to three di- For clarity of the following description, let us first define

mensions is straightforward and the results for the threelrée types of nodes: boundary nodes, fluid nodes, and wall
dimensional case will be presented elsewhere fl(tt) be nodes. In Fig. 2 we show an example, where the heavy solid

a non-negative real number describing the distribution funclin€ is @ physical boundary, under which is a wall. Associate
tion of the fluid density at site at timet moving in direction ~ With each lattice node aquareof unit sides centered at the

e. Here e=(0,0), e=(cosmi—1}/2,sinmi—1]/2), i node, as shown in Fig. 2 by the shaded part. A node is called
~1234 and e’: (cosm{2i—1]/4 si|:m{2i—1]/4) ", aboundary nodéf any physical boundary crosses #guare
~5,6,7,8 are the nine possible velocity vectors. The distribu!{S€€: €:9-, N0d& in Fig. 2. In Fig. 2 the boundary node is

tion functions evolve according to a Boltzmann equation thaf€Presented by a filled square. A node is called a wall node
is discrete in both space and tif@4], (fluid nods if its associated square is wholly inside the im-

permeable wal(fluid domain, as shown by a filled diamond
1 (open circle [18].
filx+e,t+1)—fi(x,t)=— ;(fi—fieq)- ) It is clear that only a part of the square of the boundary
node is filled with fluid, so that the real fluid density at the
The densityp and macroscopic velocity are defined by boundary node is significantly less than those at its neighbor-
ing fluid nodes. In fact, for any boundary node, only the
distribution function in the directiorg pointing toward a
P:Z fi, PUZEi fie (2> fiuid node isrelevant which will be used in the streaming
step, while the distribution function in the directienpoint-

and the equilibrium distribution functions®® are usually ing toward a boundary node or wall nodeniglevant Simi-
supposed to be dependent only on the local densignd & to what was proposed by Che al. [16], the relevant

flow velocity u. A suitable choice reads,4] distribution functions at these boundary nodes are obtained

by extrapolation before each streaming. However, the present

eq 9 , 3, scheme includes two steps: the extrapolation of the nonequi-
fii=paij1+36-ut (6 -u)"—su7), (3 librium part of the distribution function, and the extrapola-

tion of thetemporarydensity andemporaryvelocity (to be
where ag=4/9, a;=a,=az3=a,=1/9, and as=ag= a5 defined beloy, based on which the equilibrium part of the
= ag=1/36. The macroscopic equations can be obtained by €istribution function is specified. To be more specific, let us
Chapman-Enskog proceduf8,4]. They are the continuity ~take the boundary node marked Ayn Fig. 2 as an example.

equation In order to obtainfg(xg) by streaming,fg(x,) should be
determined. Denote
atp—’_aa(pua)zo (4)

fo(xa) =f5U(xa) + f5°YXn), (6)
and the Navier-Stokes equations o .
wherefgf(x,) andfg®4x,) are the equilibrium and nonequi-
d(pUy) +d(pUylg)=d,p+vdglp(dalugtdgu,)], librium parts of the distribution functiofg(x,). We assume

(5)  that
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f5o9xa)=2f5%xg) — g4 xc). (7)

This extrapolation scheme guarantees first-order numerical
accuracy forfg®d. For example, assume that the spatial
increment is dx. Using Taylor's expansion we know
that fge9(xg) =[ fa¢4xa) + fa°%4xc)1/2)+ O(dx?) [assuming
fac%xa) and fg¢Yxc) are known, or f§*4xa) =2fg°%Yxg)
—f2¢qxc) + O(dx?) [assumingfg®Y(xg) and fg¢Yxc) are >
known], leading to a first-order accuracy approximation of
the nonequilibrium part of the unknown distribution function
at a boundary nodgl6]. As the nonequilibrium part is the
first-order small quantity in the Chapman-Enskog procedure,
the error caused by E@7) in fg(xa) is of third order.

The equilibrium partf§%(x,) is calculated based on Eqg.
(3) with the temporarydensityp, and velocityv, . The lat-
ters are obtained by the following extrapolation and interpo-
lation, respectively:

B
T
+-
+4
1

PR
H I R

PA=2pB~PC (8) X
v+ (A—1)vg FIG. 3. Part of an inclined tube for the inclination angle
VA:T' 0.5=A<1.5, 9 =tan 1(1/2). The solid lines are the physical boundaries of the

tube. If the halfway bounce-back rule is applied, the unshaded part
represents the fluid domain. The heavy dashed lines are the refer-

where pg and p: are the well-defined densities at the fluid ence lines for measuring the velocities,

nodesB andC, A is the vertical distance from the poiliton
the physical boundary to the no@eshown in Fig. 2, andy
andvg are the fluid velocities & andB, respectively. As/
is the velocity of the fluid aK, it can be nonzeravhile the

d is the radius of the tube, ang, is the maximal velocity,
which depends on the pressure differerdce between the

. . .. re| .
physical boundary is stationary if the boundary is permeable:,?rllztda;sd outlet. The refative error at locatipne; ™, is de
With fg(x,), the streaming from the boundary no#leo the
fluid nodeB can be carried out like that between the fluid U—u
nodes. It should be noted that although Ey.is the same as el=1—, (11)
that in the paper of Filippova and Harjél7], the range ofA Uj

is 0.5<A < 1.5, which avoids the singularity point &f=0.
The above procedurgEgs. (6)—(9)] is applied to each
relevant directiorg of a boundary node at to obtainf;(x)

wherer is the simulated velocity at locatign In order to
minimize the error due to the inlet and outlet, we consider

. . . _ 71 .
for streaming, whilef;(x) in the irrelevant directiorg is the inclined tube withg=tan “(k/l), wherek is a non-
undefined. The macroscopic densities and velocities at thA€J9ative integei,is a positive integer so that all the nodes at
boundary nodes are also undefined at this stage, while thg" Nl€ 1 Nke;, with n being an arbitrary integer, share the
temporarydensity and velocities in Eq¢8) and (9) are in-  S&me distance from the centerline and velocity for the ana-

troduced solely for the calculation of the equilibrium distri- Ytical solution(10). Unlike a flat tube along the direction,
bution function in the directior . where all the nodes at the inl@utlet) share a same value,

for an inclined tube the inletoutled is like the left-most

heavy dash line in Fig. 3. Explicitly, the nodes at the inlet

(outley of this inclined tube locate on a ling—yy=

— (I/K)x—Xq, wherex=(Xg,Y,) is a node at the inletout-
The Poiseuille flow in an inclined tube shown in Fig. 3 let). Without loss of generality, we assurhz k. We set

with the velocity of the fluid at the tube boundawy=0

provides a good benchmark for testing the boundary condi-  fi(X)/fo(X)=fi(x+1ey+key)/fo(x+ 1€ +key)

tion, since its boundary is not flat, while analytical results are

available that make the comparison to high accuracy pos-

sible. The analytical solution for the velocity profile is

known and given by

B. Numerical demonstration of the accuracy of the boundary
condition

when x is a fluid node at the inlet,

fi(x)/fo(x)=fi(x—le;—key)/fo(x—le;—key)
with x being a fluid node at the outlet

j2
“i:u0<1_¥)' (10 for i=1,2,...,8,while the density at the inletoutled is
fixed. Since the node atat the inlet(outlet) and the node at
whereu; is the component of the velocity vector along the x+le; +ke, (x—le;—ke;) in the fluid domain share the

flow direction at a distancgfrom the centerline of the tube, same distance from the centerline, these assumptions guaran-
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the boundary conditions proposed in this papeis the distance FIG. 5. The same as Fig. 4 except that the halfway bounce-back
rule is applied. The solid line is the best fit of the simulation results.

from a node to the centerline of the tube Wlth. the S|gnan_d N The dashed line is the same as the solid line in Fig. 4, which is the
denoting the node above or below the centerline, respectively. The

solid line is the analytical result. The filled squares, circles, dia_expected analytical prediction.

monds, up triangles, and the down triangles are the simulation r&; e ai runs over all fluid nodes on the dashed lines in Fig.
sults for the nodes on the heavy dashed lines shown in Fig. 3, froné rel . .

) ) . €may @nd e, for different widthd of the tube are presented
left to right, respectively. max 9

in Fig. 6. Bothey and ere! are very small and less than 1%
satisfying the analytic&Ven ford=3. In all the simulationsyy is fixed to 0.02.

results (10). Moreover, the distribution functions in some We further consider the case with the fluid at the tube wall

directions at the nodes near the infet the outlet cannot be  having a fixed velocity, = (uj,u, ), whereu; andu, are the
determined in the streaming step for an inclined tube. Anv€loCity components parallel and perpendicular to the tube,
example is the distribution function from the left side of the '€SPectively. Some simulation results are in order. Now the
nodes on the second left-most heavy dashed line in Fig. 3 gnalytical results of the. velocity of the fluid should be the
we assume that the left-most heavy dashed line is the inletCtor sum of the velocity, and Eq.(10). _
In the present simulation, they can also be determined by the (1) Numerically we find that the simulations achieve ma-
above equations. In the present paper, we only show thghin€ accuracy ikp=0. _
results for X=1=2. (2) When Ap#0, uj#0, andu, =0, corresponding to
Initially, the distribution functions at all the fluid nodes, Nonslip of the fluid at the boundary when the tube is moving
including those at the inlet and outlet, are assumed to be thlong its axis, the simulation results show that the existence
equilibrium distribution functions with zero velocity and one ©f non-zerou; does not degrade the accuracy.
unit density. In the first 1000 time steps, the density at the (3) When Ap#0, u/=0, andu, #0, corresponding to
inlet (outlet increasegdecreasedinearly up to a fixed den- leakage of the fluid out of the tube or a distensible imperme-
sity pin (pour). After 10000 time steps, the system is staple@ble tube, the error is relatlvellarge and.de_creasea_ &8,
enough for analysis. In Fig. 4 we show the velocity profile decreases, wheng, is the maximal velocity in the tube for
for the fluid nodes on the heavy dashed lines shown in Fig. 31e case with the same pressure digpandu, =u;=0 [see
with the present boundary condition fdr=3y5 andr=1. Eq. (10).]. The maximal relat|ve. error and the global error are
The simulation results are quite consistent with the analyticanOWn in Fig. 7., decreases linearly as /u,. For most of
results. For comparison, the simulation results with the halffn€ cases, such as the blood flow in eladtibod vessels,
way bounce-back rulg19] are shown in Fig. 5. It is clear u, /ug is very small and our scheme achieves sufficient ac-
that the present boundary condition greatly improves th&uracy.
simulation results. Moreover, the real boundary, correspond-

il

FIG. 4. The normalized velocity profile obtained by applying

tee that they share the same velocity,

ing to the zero velocity, cannot be predetermined if the half- 0010 ] ' o
way bounce-back rule is applied for a nonflat boundary. 0.008 4 " i
The maximal relative erroelel,, which is the maximal ;
value of €', and the global errog, in velocity field of o 0:006+ . .
simulation against analytical results are, respectively, defined = T =
as o 0.004- "]
erng-:‘;X: max eirel}, 0.002- . .
0.000 +———21%+———2
2 4 6 8 10

Ei ||u(Xi vt)_a(xi 1t)H2
Gg: )

> u(x;,t)?

12
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- > {2fip+e)—fi(xpt26)}

i=23,5,6
fi(Xp)=

4

for i=0,1,...,8.(13)

error

IV. TESTING THE MASS CONSERVATION OF THE
BOUNDARY CONDITION

T In this section we will show that the boundary condition
0.01 0.1 described in the above section can be applied to study the
uJ_/u0 viscous flow with moving and impermeable boundaries.

FIG. 7. The maximal relative erraf<. , (filled squaresand the A. Necessary conditions for a boundary condition for

global errore, (filled circles for different vertical velocities of the impermeable boundaries
boundaries. The solid line is a linear fit ef, which shows thag,

decreases as, /uq. As the nodeA shown in Fig. 8, only dshaded part of the

squareof a boundary node falls in the fluid domain. As a
(4) WhenAp+0, uj#0, andu, #0, the accuracy of the result, thereal fluid massm, inside the square of the bound-
simulation is almost the same as c#3p ary node should be considerably smaller than that in the
Although the above numerical results are obtainedsfor Neighbor fluid node. If we assume, as in most cases of the
—1 anduy=0.02, numerically we find that the simulation LBM _sm_1u|at|ons,_ that the fluid density in the simulation
achieves similar accuracy for 0.25<2 andu,<0.2. Thus, domain is(approximately constantpo, we have
the scheme is a good candidate for the boundary conditions
for stationary boundaries. The boundary condition for the

nonstationary boundaries can be considered based on thisere S is the area of the shaded part of the square of a

scheme. boundary node. In other words, because the area of the
N _ _ square associated with any node is always unity, we may
C. Boundary condition for nonstationary boundaries consider that the fluid density at the boundary node is

If the physical boundary has nonzero vertical velocity,
some boundary nodes will change into fluid nodes and vice

versa. As described above, the distribution functions in wrel-We emphasize that theapacityof the boundary nod for

Mp= poS,

p=Mmp=poS. (14)

e e, o e s e the oer partof renogm

node, the di:stribution functions for this boundary node are If the inclined angle of the boundary is small, as in the
' case of nodd, the fluid density at the boundary node can be

assumed to be the average of the extrapolated values froma%proximate d by

second-order extrapolation scherogall the possible direc-

tions. This is consistent with the above boundary condition _ _

b : . . P=pPoS=pol, (15

ased on interpolation and extrapolation. For example, when

the physical boundary shown in Fig. 8 moves downward, th§yhere| is the length shown in Fig. 8, since all squares are of

nodeD will become a fluid node. There are four directions it sides.

€.,€3,85,65 pointing toward fluid nodes. The distribution | the LBM simulation,l andp are obtainedseparately|

functions atD are obtained as is found based on the position of the physical boundary,

while p, which is the fluid mass accumulated or leftover at

the boundary, is determined by the fluid particle transfer be-

tween the partly filled boundary node and its neighboring

fluid nodes in a series of streaming steps. We can, therefore,

define a quantity

C(l,p)=(pol =p) po=1—plpo

physical boundary

to characterize the degree of mass conservation at the bound-
ary. Obviously,C(l,p) =0 corresponds to Eq15). There is
mass conservation at the boundary since the shaded part is
FIG. 8. The relation between the boundary nodes and fluiccompletely filled withpgl fluid particles without any free
nodes near a nonflat physical boundary. space and extra fluid particles left. @(l,p)<0, thenp
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>pol and the extra fluih— pgl is believed to have entered t ty ty

the wall, since the capacity of the boundary node for fluid  p(x,t;)= >, SpAt= >, puAt=pg>, vAt=pq.
particles is onlypyl, which can stay in the shaded part of the t=to t=to =t

squareof the boundary node. Similarly, whe@y(l,p)>0, p
<pol and the differencegl — p is regarded as fluid particles

(18

. ' This new fluid node, therefore, has the same density as other
coming from the wall since the shaded part of ymareof fluid nodes, yielding no perturbation when the boundary

the boundary node must be filled with! qu_|d parthles. As node becomes a fluid node. Moreover, at titewith t,
a result, the wall behaves in some sense like a fluid reservoir . _
<t <ty, I=v(ta—ty), andp=pev(t,—to), we get

or physically, the boundary should be permeable. An imper-
meable boundary requires that the boundary conditions C(l,p)=1—plpg=0
should yield(nearly vanishingC(l,p). ’ o
In the following three subsections we will show that the
present boundary condition leads to(mearly vanishing
C(l,p). So it can be applied to the impermeable boundaries.

A similar result can be obtained for the process
a fluid node—a boundary node-a wall node (19)

B. Analysis and simulation of the viscous flow in a channel as well. We verify this by numerical simulation. The simula-
with impermeable flat boundaries tion results achieve machine accuracy.

Consider a channel with a flat wall moving with a con-
stant velocityu= (u, ,uy) =(u,—v), whereu and—v are the C. Simulation of the viscous flow in a channel with
parallel and vertical components, respectively. Without loss impermeable nonflat boundaries
of generality, we assume>0. After the system becomes

_stable, all the _flwq nodes_ share _trmme and time- shown in Fig. 8, we may have to consider the boundary
|ndependentd|str|but|on ﬂ.mc.t'on.Sf‘ ’ ':(.)’1’2 ---.8 and  qndition for the node8, C, andD. The streaming between
densityp,. The relevant distribution functions of the bound- 4 boundary nodeB andD will also be considered to guar-
ary nodes are also the same as those of the fluid nodes. 56 that the density increment on the n@deehaves the

Let us consider a boundary nodeat x, of & bottom g4 e a5 the other boundary nodes on the flat boundary. The
boundary (see, e.g., the nod& shown in Fig. 8. In the  giginutions functions for such streaming are obtained by the
streaming step, the distribution functidn(xa—s), f2(Xa  ayerage of the extrapolated values of all the possible direc-
—&), and fg(xa—es) will propagate to the nodé. The  ions For example, there are two directiors,and e, for
node A thus receives fluidf,(xa—€) +f7(Xa=€/)+Ta(Xa  the nodeB with the directions pointing toward fluid nodes.

—6g) in the streaming step. On the other hand, the fluidyhe distribution functiorfs(xg) is enforced by
distribution functionsf,(Xa), f5(Xa), andfg(xs) will leave

the nodeA and propagate to the nodes@tte,, X5+ €5, and

Xat €, respectively. The noda loses fluidf,(xa) + f5(Xa) j=226 fs(xgt€)
+fg(Xa) in the streaming step. The increment of the fluid fs(Xg)= f
density at the boundary nodein a the streaming step is,
therefore,

If the channel considered above has nonflat walls as

(20

We can get the same res(ifiq. (18)] in a way similar to that
Sp=[fa(xa—€y)+f7(Xa— &)+ fo(Xa—6€5)] shown in the above section.
The cases for nodésandD are completely different. The
—[fa(xa) + f5(xa) + fo(Xa) 1. increment of the fluid density at the noBein each(stream-
) ) . Ing) time step is
Recalling that all the fluid nodes and the relevant direc-
ftions of the I?ou-nda-ry node§ share the same and time-épD: f4(Xp—€4) + F7(Xp— &) + Fa(Xp— 88) + F1(Xp—€1)
independent distribution functiorfg(x) for anyi, one gets
+f5(Xp—€5) = fa(xp) = f5(Xp) — fe(Xp) — F3(Xp)
5p=f4+f7+f8—f2—f5—f6=—pouy=pov. (16)

—f7(Xp)
In the time interva[ty,t,], the increment of the densiyy is b ot fat Fot foam o fom o fae fom it f
v(ty—tg). Letty be the time when wall node atbecomes a A R
boundary node ang the time when the boundary node turns +fg—f,—fy3—fg. (21

to a fluid node, i.e.,
The increment of the fluid density at the no@ein each

atty atty (streaming time step is

a wall node— a boundary node- a fluid node. (17)

Opc="Tg(Xc—63) —fg(Xc)=Fg—f;. 22
Then one has the fluid densify(x,t)=0 and SiL, vAt pe=Ta(xc— ) ~TolXc)=Ts~fs 22

=1. HereAt=1 is the time step. As a result, the density atThe total increment of the fluid density at both the no@es
the node at, reads andD in each(streaming time step is
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FIG. 9. A channel with nonflat boundaries. The boundary nodes
and the fluid nodes are represented by open diamonds and filleéllﬁ

circles, respectively.

op=dpct bpp
:f4+ f7+ fs_fz_fs_ f6+fl+f5+ fS_ f3_f6_f7
=p0(ux_uy)

=po(U+tv). (23)

If we setu=0 and takedp as the total increment of the
density at the nod® in each time step, we can get EG6)
and we are in the same situation as the flat boundahe
case foru#0 will be considered elsewhere, in which we
may have to consider the streaming of the distribution func
tions between the neighbor boundary ngd&¥e verify this
with a numerical simulation of the tube shown in Fig. 9. The
simulation also achieves machine accuracy.

In the case of varying/, we cannot get the analytical
result as Eq(23), since the distribution function is different
at different fluid nodes and different times. However, nu-
merical simulations show thdC(l,p)| is very small. We
have performed a simulation of the viscous fluid flow in the
channel shown in Fig. 9 for 2000 time steps with
=vSin(wt), wherevy=0.004 andw=2=/T with the period
T=1000. The distribution o€(l,p) is shown Fig. 10 for all
boundary nodes, corresponding to different values; cee
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Q  1.0000 -
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2115,
000924 12
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Y

FIG. 11. The densities at the nodexat40 with respect ty for
erent timet. T is the period of oscillation.

nodes at the inlet and outlet are fixed todye=1. The error
comes from the deviation of the density frgsg, which re-
sults from thetime-dependentelocity v. In Fig. 11, we
show the densities at the nodesxat40 with respect ty for
different timest. The densities at these nodes oscillate with
sin(wt). Moreover, we can see that it seems th&tl,p)|
shown in Fig. 10 depends dnsingle valuedly except at a
few points above the curve. Since the channel is norflat,
may be different for different boundary nodes. On the other
hand, different nodes may share the same valué d@he
boundary nodes share the samehile the values oC(l,p)

are different, resulting in the multivalued results. A careful

examination shows that these points come from the data
close to the inlet and outlet. We believe that the error can be
reduced if we can apply a lattice Boltzmann method with
nearly constant densif\20].

D. Simulation on the viscous flow in a channel with density
difference between inlet and outlet

The pressure is proportional to the density in the conven-
tional lattice Boltzmann models. In most of the cases we
have to consider viscous flow with pressure gradient, so that
the density is different at different fluid nodes and different
times. For these systems, E¢$4) and(15) and the quantity

open diamonds in Fig. 9. The maximal absolute error forC(l,p) will have to be modified as

|C(l,p)| is 0.0035. In the simulation, the densities at the

1 Ll 1 1
0.003 1 o -
o° o0
— 0.002- /MW‘ J
—
Q
-~ o/
S ()
¢ 0.001 '.' .
0.000-.r —r77
00 02 04 06 08 1.0

l

FIG. 10.|C(l,p)| vs | in the channel with nonflat boundaries
shown in Fig. 9 with the densitigs,=1 at the inlet and outlet. The
channel moves perpendicular to the channel with veloaity, §,)
=[0,0.004sin(zt/1000)).

P=pnS, (24)

p=pnl, (25

and

Cl,p)=1=plpn,

where p, is determined by the densities of the fluid nodes
nearby. A suitable choice is that, is the average of the
extrapolated values from &aecond-order extrapolation
schemeof all the possible directions, as shown in ER0).

The absolute value dE(l,p) is much larger in those cases.
In Fig. 12 we show the simulation results for the viscous
flow in the same channel shown in Fig. 9 for 2000 time steps
with v=0.003 anduv=v,Sin(wt), respectively. Herev,
=0.004 andw=27/1000. The densities at the nodes on the
inlet and outlet are fixed to be 0.9918 and 1.0066, respec-
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0.025 —— The above discussion shows that the boundary condition
I can be applied to simulate the viscous flow with moving and
0.020 ] impermeable boundarieIhe errors mainly result from the
0,015 o i compressibility of the lattice Boltzmann moda$ had been
oy %%OO __f- discussed in Sec. IV C. If there is an incompressible model
~ 0.010 a™ with explicit constant density while the pressure deviation is
O et allowed [20], Egs.(16) and (23) are guaranteed at least to

0.005

first-order accuracy for the flat and nonflat boundaries, re-

0.000 =5 -..-- fl'l_ — 1 spectively. In the simulation of the viscous flow in the large
00 02 04 06 08 1.0 blood vessels, the longitudinal movement is usually ne-
glected[2]. Consequently, there is approximate mass conser-

l vation for both the flat and nonflat boundaries with an arbi-

FIG. 12.|C(l,p)| vs | in the channel with nonflat boundaries rary velocity in the present scheme.

shown in Fig. 9 with the densities at the nodes on the inlet and

outlet of 0.9918 and 1.0066, corresponding to the maximal velocityV. NUMERICAL SIMULATIONS OF THE VISCOUS FLOW

component along the channel at the outlet being 0.0368. The chan- IN DISTENSIBLE TUBES

nel wall moves perpendicular to the channel with velocity

(uy,uy)=[0,0.004 sin(21/1000)] (open circley and (Uy,uy)

=(0,0.003)(filled squarey respectively. We perform simulation of a long and thin plane elastic
pipe with lengthL. The pressur@(x) to width a(x) relation-

A. Steady flow in an elastic tube

tively, corresponding to the maximal velocity componentSNiP is assumed to be linear
along the channel at the outlet being 0.0368(,p)| is less po=alal(x)—a 26
than 0.02 and 0.05 for the constant and varying velocities, P(X) = Po=a(a(x) = ao). (26)

respectively. wherea, is the width when the pressure inside is fixedtp

and « is a compliance constant. In the three-dimensional
E. Simulation of the viscous flow in a channel with elastic case witha being the tube radius, E¢26) is a good repre-
boundaries sentation of the pulmonary blood vessgld. Denoting the
. ) pressure at the inlet and outlet Ip¢0) andp(L), respec-
InlltlaIIy the tube _has a constant radiag=9.5, and the tively, we assumep(0)>p(L). Since the pipe is long and
density decreases linearly from 1.0190 to 1.0034 along thﬂwin, that is,L<a, and the pipe is smooth under deformation,
channel. For our LBM simulation, the channel is 59 lattices,o velocity can be approximated by that of the plane Poi-

units in length so that eactupper or lower boundary is  geyjijle flow[1]. Denoting byu(x,y) the longitudinal veloc-
composed of 59 small segments with unit length. A linear;

ity of the flow in the tube atX,y),
compliance force—aAy is applied on the segment if its y AY)

displacement from the initial location i&y. The mass for 2

4
each segment is 500 ang=0.002. The pressurgs at each u(x,y)=ug(x)| 1— 5% ,

segment of the physical boundary is obtained by linear ex-
trapolation.ps— py determines the net hydrodynamic force ) , )
acting on this segment, whegg=1/3. The sum of the net Wherey is the distance from the centerline,
hydrodynamic force and the compliance force gives its ve-

locity and its displacement from the equilibrium location by ap(x) a*(x)

Newtonian dynamics. After 800 time steps, we get the chan- Uo(X) =~ ax  8v
nel shown in Fig. 9|C(l,p)| are shown in Fig. 13.C(l,p)]
is less than 0.02. is the velocity at the centerline. The volume-flow ratex &t
Y7 — R 2 a’(x) ap(x)
] ] Q(X)=f u(x,y)dy=zug(x)a(x)=—-— :
-R v X
0.016 -+
— ] o.’: ]
o 0.012- e From Eq.(26),
.:: J ~.... J
o 0008 o 3 ap(x)  dax)
0.004- -~ . ox Y dx
- “ -
0.000 Mduadto®
00 02 04 06 08 1.0 Consequently
!  aa¥(x) dax)
FIG. 13.|C(l,p)| vs| in the channel with elastic boundaries. Q= 12v  dx
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11.0 - — 1 T 1T 71 v 1 — v T v 1T v 1T
L + Numerical results 0303- + Numerical results
10.5 - Analytical results - Q Analytical results
] e
=
o~ .
sc 100 o 0.301- -
g (D
m 9.5' d)
1 i
9.0 1 o 0.299 4 Caoo7] &
8 5_- 0.3005
d iy y y ¥ 0.3003: T T T T
——— 0.297 +———— 0%+ e 83
0 20 40 60 80 100 0 20 40 60 80 100
FIG. 14. The analytical prediction«) and numerical simula- FIG. 15. The analytical prediction+) and numerical simula-
tion results (+) of the width a(x) of an elastic pipe along the tion results ¢) of the pressur@(x) in the same elastic pipe of Fig.
channel. 14. The dashed line is a linear connection between the beginning

and ending points serving as a guide to eyes, which should be the
In a stationary, nonpermeable tulijs constant through the result for a rigid pipe.
length of the tube. Integrating this equation, we obtain, for

steady flow, a theoretical formula for the wickilix) and the V-u=0,
pressurep(x), : : : o
whereu={u,v} is the velocity of the fluid. The continuity
a%(x)—a%(0)=Bx, B=-48Q/a 27) equation can be written in terms ofandv as
Ju  Jdv

4 (29

—+—=0.
=Bx, (28 ax . ay
Integratingy from y= —R to y=R, whereR is the radius of

whereQ is the volume-flow rate, which is constant through- the tube ak, we obtain
out the pipe in a stationary, nonpermeable pipe. J (R
For our LBM simulation, the pipe is 100 lattice units in — | udy+v|Rz=0. (30)
length so that eackupper or lowey boundary is composed IXJ-Rr
of 100 small segments with unit length. Each unit is assumed ,
to obey Hooke’s law, i.e., a linear compliance foreerAy  Recalling the symmetry of the tube
is applied on the segment if the displacement from the equi-

ap+

O —
ag+ p(0) —po
o

P(X)—po|*
63

librium location of a segment idy. Equation(26) is the Up=ly-r="vly-—r, (31)
steady state of this compliance force. The mass for eachne has

segment is 500. The equilibrium radius ag=9.5 for pg

=1/3. Initially the tube has a constant radiag The pres- dUp,

surep, at each segment of the physical boundary is obtained Up= TR (32

by linear extrapolationps— py determines the net hydrody-
namic force acting on this segment. The sum of the net hywherev, is the radial velocity of the upper tube boundary
drodynamic force and the compliance force gives the velocandu,, is the average velocity ai, defined by
ity and its displacement for each segment from the
equilibrium location by Newtonian dynamics. 1 (R

The radius and the pressure for part of the tube for steady um:mf_Rudy. (33
flow are shown in Figs. 14 and 15 respectively. It is clear that
the simulation results are in excellent agreement with the |n Fig. 16 we show an example for simulation results. The
analytical predictions. In our numerical simulatiom;  pipe used is 200 lattice units in length and 38 lattice units in
=0.0027=1,p(0)=0.297 62, angb(L) = 0.302 94. It should  width when the pressure is fixed to pg=0.333 333 3 in the
be noted that although we have obtained similar results ifube. In the simulation, the pressure at the outlet is fixed to

our previous papef18], the present scheme reaches muchpe p,, while the pressure at the inlet varies according to the
higher accuracy. equation

B. Unsteady flow in artery Pinlet= Po+ PaCOg wt), (34)

In the fluid domain, the continuity equation for the incom- wherew=27/750. The maximal velocities for the open and
pressible fluid reads filled circles are 0.08 and 0.008, respectivaby. is deter-
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) \ = Simulatlon results
[/ — — Experimental data

o U
a X B ‘\\ -
FIG. 16.v, vs —Rdu,,/dx in an elastic tube with pulsatile fluid

flow in a period at=10. The maximal velocities in the tube for the > / \ A
open and filled circles are 0.08 and 0.008, respectively.

center

mined by the maximal velocity. The simulation results agrees

with Eq. (32) approximately. The error results from the com- 0 T

pressibility error of the lattice Boltzmann model. It is clear t

that the smaller the maximal velocity, the smaller the error. (b)

In the LBM, the continuity equation is E@4), which is not 10T

incompressible. It seems that an incompresible model I “

[20,2]] is important to obtain accurate numerical results for 1
1
\

e Simulation results

the viscous flow in distensible blood vessels. = T Experimentalaata
Finally we present our simulation results on the pulsatile

flow in large blood vessels. The pipe lis=1200 units in 2 9

length and 76 units in width initially with both sides closed. >

At discrete timet=T,2T, ... nT, ..., 1/500 of the total

fluid particles in the pipe are injected into the pipe from the

left side and ejected out of the pipe from the right side si-

multaneously withT =671. The fluid will then flow from left (c) 0

to right. Figures 1i&,b display the typical flow field in the

distensible blood vessel at=40 of the tube. We find that FIG. 17. The flow field in an elastic vesselxt40. (a) The

both the axial velocity profiles and the centerline velocity axjal velocity profiles at different values of tine(b) the centerline

wave are quite similar to the experimental results for theyelocity wave,(c) the radial velocity of the vessel wall with respect
aortic flow (Fig. 7.27 of{2]). Considering that the simulation to timet. The dashed lines ifb) and(c) are the experimental results
is performed in two dimensions while the experiment is infor the aortic flow.
three dimensions with a viscoelastic blood wall, the agree-
ment between our simulation results and the experimentdlon is tested in detail, showing that the boundary condition
ones|2] is rather satisfactory. We also show the radial veloc-can be used to study the flow with impermeable boundaries.
ity of the vessel wall in Fig. 1(¢), the difference between the The viscous flow in elastic vessels is simulated with the
experiment and theoretical simulation results from the vispressure-radius relationship similar to that of the pulmonary
coelastic property of the wall. In the simulation, the tubeblood vessels. The numerical results for steady flow agree
wall is pure elastic so that the wave of the radial velocity iswith the analytical prediction to very high accuracy, and the
close to a sine function. The viscoelastic property of thesimulation results for pulsatile flow are favorable with that of
blood wall leads to a simple pulse in the wave of the radiatthe aortic flows observed experimentally. These results, to-
velocity from experiment. gether with the simplicity and the ease of implementation of
the model, suggest that our approach may be a promising
tool in studying the blood flow in arteries, especially in the
diseased ones that suffer from atherosclerosis, stenosis, or
We have established a lattice Boltzmann model for simu-aneurysm.
lating the viscous flow in large distensible blood vessels by It should be noted that the compressibility of the model
introducing a boundary condition for elastic and movingresults in considerable error when pressure variation is large
boundaries. The mass conservation for the boundary condenough. Incompressible LBM models with expli¢itearly)

VI. CONCLUSION AND DISCUSSION
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constant density are necessary to obtain accurate numeridaghavior of the blood wall is important. We are working on
results for the viscous flow in distensible blood vesselsthis direction.

Moreover, the blood wall is viscoelastic and blood is a vis-

coelastic fluid. It had been shown that the error of the elastic LSS

property of blood can be neglected when we only consider This work was supported by NSFC through Project Nos.
the flow in large blood vesse|2]. However, the viscoelstic 19704003, 19834070, and 19904004.
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